Update to BRiDTaskBuilder & BRiDTask II User's Buide

and BRiDTesk User's Buide

October 1986

The replacement pages that iollow reflect changes to the Noveaber
1985 editionc of the GRiDTaskBuilder '& GRiDTask I1 User's Guide and
the GRiDTask User's Guide. Replace the pages in these manuals with
the pages in this update according to the fo!llowing guide.

GRiDTaskBuilder & GRiDTask Il Uzer's Guide:

Add update page 9 to the end of the manual.

GRiDTask User's Guide:

Discard these
Existing pages

Replace with
these Update Pages

Table of Contents Table of Contents

4-1/4-2 4-1/4-2, 4-2a/blank
4-11/4-12 4-11/4-11a, 4-12/blank
4-73/4-74 4-73/4-73a, 4-74/blank
4-87/4-88 4-87/4-87a, 4-88B/blank
4-91/4-92 4-91/4-91a, 4-91b/4-91c, 4-92/blank
4-95/4-96 4-95/4-96

A-1/A-2 A-1/A-2

A-3/A-4 A-3/A-4

E=1/E=2 E-17E=2

H-7/H-8 H-7/H-8

[-4/1-4a 1-4/1-4a

1-21/1-22 1-21/1-22

1-23/1-24 1-23/1-23a, I-24/blank
I-31 I-31

Order Number:

021250-45

GRiDTackBuilder & GRiDTask II

Using Overlays You can use overlays in GRiDTask II to reduce the amount of

rev.

10/86

RAM that is used by the program. With overlays, only part of the
program is loaded into memory at a time.

GRiDTask Il overlays are very easy to use. GRiD7ask Il does all the
work for you, automatically loading the correct overley whenever it
is needed. The only thing you need to do is specify which source
files go into which overlays when you invoke BRiLT skBuilder. You
do this by inserting the word "overlay" into the rommand line 7sed
to invoke BRiDTaskBuilder. For example:

GRiDTaskBuilder mainFile, partl, part2 OVERLAY part3, part#
OVERLAY parts

This invocation of BRiDTaskBuilder creates a root section that
remains loaded in RAM when the program is executing, and two
overlays. The root section consists of the statements and
procedures defined in the files "mainFile”, “partil", and "part2®,
The first overlay contains the procedures defined in the files
"part3" and “part4”. The second overlay cnntains the procedures

defined in the file "partd".

When you execute a program, the root secticn and the .ir.t overl.y
are automatically loaded into RAM. Besides th. roc: ~.ction, anl ¢
the code in one overlay is loaded into RAM at ore .ime. If a
procedure is called or returned to in an overiay that is ot
currently loaded, GRiDTask II will free the memory p:cupied by tn=
currently loaded overlay, and load the necessary pverlay into RAM.

Note that there is a slight delay every time GRiDTask II loads
another overlay since it must read from the program file on a
permanent storage device.

You can use a maximum of 255 overlays in a BRiDTask Il progranm.

TECHNICAL NOTE: The RAM used for GRiDTask overlays is not a static
preallocated block as in Pascal overlays. Instead, the RAM required
for each procedure in an overlay is allocated separately from the
heap memory manag2r. The adv-ntuge of this methed is that when a
small overlay is loaded, more RA.. is availavle for other purposes.
The disadvantage is that you canrot know exautly how RAM is u-ed at
any point in time.

Chapter 1|

N
]

Chapter

Chapter 3

Chapter 4

INTRO
ADDKEYS
APPENDFILE
ASC

BREAE
BREAKONKEY
BREAKRESET
CELLS$
CENTER
CHANGEKINDS$
CHARHEIGHT
CHARWIDTH
CHR$
CLEARMSG
CLEARSCREEN
COMMANDLINE
COMMENT
CONCHARIN¥
COPYFILE
CURSOR
CURX,CURY
DATES
DELAY
DEVICES$
DIRECTORYS#
Do

DOFORM#
DOMENU
ELSE

ENDIF

ENDP
ERASEBOX
ERASEFILE
ERRORCODE
ERRORSTR$
FALSE
FILEFORM
FINDTITLES$
FONT
FORMCHOICE

rev. 10/86

BRiDTask Manual
Table of Contents

GRiDTask Overview
GRiDTask Concepts
Language Constructs

GRiDTask Verbs

iii

-
[}
W N W N -

FORMCHOICES$
FRAMEBOX
FREEFONT
GETFILES
IF/ELSE/ENDIF
INKEYS
INPUTS
INSTALL
INSTR
INVERTBOX
INVERTLINE
ITEMCOUNT
LASTKEY#
LASTMESSAGES
LEN
LINEHEIGHT
LOCATE
MEMORY
MID#
MSGHEIGHT
PAINT
$PARSEONLY
FPASSKEYS
PAUSE

PLAY

PRINT
PROCEDURE
READFILES$
REMOVELIB
RETURN
SCROLL
SCROLLBOX
SETFORM
SETMENU
SPEED
STACKMSG
STACKSIZE
STOF

STR$
SUBJECTS
SUBSTITUTES
SUBSTRINGS
TASK
TASKWINDOW
TESTKEYS
TIMES
TITLE

TRUE
UPDATESCREEN
VAL

WEND
WHILE/WEND

rev. 10/86

iv

4-51
4-54
4-355
4-54
4-58
4-460
4-41
4-43
4-63a
4-64
4-465
4-46
4-467
4-468
4-49
4-7Q
4-71
4-72
4-73
4-73a
4-74
4-75
4-76
4-78
4-79
4-82
4-83
4-87
4-87a
4-88
4-89
4-990
4-91a
4-91c
4-92
4-93
4-94
4-95
4-94
4-97
4-98
4-99
4-100
4-103
4-105
4-106
4-107
4-108
4-109
4-110
4-111
4-112

WINDOWHEIGHT
WINDOWMOTION
WINDOWWIDTH
WRITEFILE

Chapter 4 - Mathematical Functions

ACOS
ATN
Cos
EXP
LOG
LOG1O
PI
RND
ROUND
SIN
S@R
TAN
TRUNC

Appendices

APPENDIX
APPENDIX
AFPENDIX
APPENDIX
AFPENDIX
APPENDIX
AFPENDIX
AFPENDIX
APPENDIX

— X G Mmoo o>

rev. 10/86

GRiDTask Verb Summary

Encoded Keystroke Chart

Key Decimal Value Chart
Suggestions on Getting Started
Reserved Words

Error Messages

Procedure Performance Issues
INSTALL Verb Development

Forms Verbs and Specifications

4-113
4-114
4-115
4-116

4-117

4-118
4-119
4-120
4-121
4-122
4-123
4-124
4-1235
4-126
4-127
4-128
4-129
4-130

Section One — GRiDTask VERBS

This chapter contains detailed descriptions of the verbs of the GRiDTask
language, including functions, procedures and predefined variables. Note that
this manual uses the terms "verbs” and "statements". GRiDTask verbs are the
commands themselves, such as “PRINT", and a statement is one line in a
GRiDTask application that uses a GRIDTask verb or verbs. The chapter is
arranged alphabetically and there are some conventions used, as follows:

There is a group of GRiDTask verbs used to perform mathematical operations.
These are placed in a section entitled "BRiDTask Real Number Functions" at the
end of this chapter.

0 GRiDTask verbs appear in capital letters.
e.g. APPENDFILE

o All variable names appear in lowercase letters. If a variable name
consists of two or more words, then words after the first one may be
capitalized.
e.g. apples itemNumber item$

Special Nectes:

o You can continue a BRiDTask statement on a new line by entering an
underscore character (_) as the last character in the line. (press RETURN to
type the rest of the statement)

0 Multiple BRiDTask statements can be placed on one line by separating them
with a colon.

0 You can place GRiDWrite text formatting commands (e.g., “ep, *nl, *8l,
etc.) in a BRiDTask program. GRiDTask ignores lines with a circumflex () as
the first character.

0 Many of the examples in this chapter are shown out of context. As such,
they may not run exactly as shown. Also, some of the examples have not been
tested.

0 Appendix A is a quick-reference list of the verbs described in this
chapter (4). 4

EXAMPLES

FILEFORM "'Bubble Memory'Memos'Call Summary™Text™"
ADDKEYS "i." ; Confirm the File form
ADDKEYS "ileiVi.iti."

This example retrieves a text file, erases its contents, and then saves the
file. The first ADDKEYS statement confirms the File form. The second ADDKEYS
ctatement is equivalent to pressing:

CODE-E "le "
CODE-SHIFT-DownArrow "y
Confirm R (T
CODE-T LI ¢ A
Confirm Lof. ®

rev. 10/86 4-2a

CHANGEKINDS

NOTES

EXAMPLE

newPathName$ = CHANGEKIND$ (pathName$, Kind$)

CHANBEKIND$ is a string function requiring two string parameters.
The first parameter is a file pathname and the second is a file
Kind. CHANGEKIND$ creates a new string which is the same as
FathName$ except with the new Kind.

)

; Reformat Historical QGuotes Text File

s

textFile$ = GETFILE$("Select Text file to be reformatted”)
FILEFORM "Historical Quotes™Reformat™00"

ADDKEYS "1.iti."

FILEFORM textFile$

ADDKEYS "1i."

graphFile$ = CHANGEKIND$ (textFile$, "Graph")

FILEFORM graphFile$ + "21" ; get new file and application
ADDKEYS "i1.1."

This program reformats a text file of data that has been retrieved
from a mainframe. It writes the reformatted data to a graph file.

1) It starts by asking the user to fill in a File form selecting
the text file to be reformatted.

textFile$ = GETFILE$("Select Text file to be reformatted”)
2) It then retrieves a Reformat file.

FILEFORM "Historical Quotes“Reformat™00"
ADDKEYS "i.1ti."

3) It specifies the text file as the file to be reformatted.

FILEFORM textFile$
ADDKEYS *i."

4) It specifies the output file as having the same name as the
input text file except with a kind of "6raph®. It writes the new
graphfile, then brings it into GRiDPlot.

graphFile$ = CHANGEKIND$ (textFile$, "Braph")
FILEFORM graphFile$ + "21" ; get new file and application
ADDKEYS "1.1."

-
]

i1

CHARHEIGHT

NOTES

EXAMPLE

rev.

10/86

height = CHARHEIGHT

CHARHEIGHT is a function which returns the height (in pixels) of the
capital letters in the current font, plus one for the descenders.
The current font is the last font set with the FONT verb.

LINEHEIGHT is a similar function which returns the height in pixels
of a line of text. Note that CHARHEIGHT returns just the size of
the characters and is usually one or two pixels less than
LINEHEIGHT.

TASKWINDOW 0,04-1,=1
PRINT "The characters in this font are exactly "
PRINT STR$(CHARHEIGHT) + " high"

This example gives the character height of the current font.

4-11a

CHARWIDTH

NOTES

EXAMPLE

width = CHARWIDTH

CHARWIDTH is an integer-value function which returns the width of
the current font in the Task window. The width is measured in
pixels.

PRINT "This is your first message"

DELAY 2

FPRINT "Your first message used 26 characters,’

PRINT "so it is " + STR$(26 # CHARWIDTH) + * pixels wide"

In this example, the width of the first message (printed in the
current font) is calculated using CHARWIDTH.

MIDS

NOTES

EXAMPLE

portion$ = MID$ (wholeString$, start, length)

MID$ is a string function which returns a portion of a specified
string.

The first parameter is the string from which the portion is
extracted. The second parameter is the character position at which
to start the new portion string. The third parameter is the length
of the portion string.

MID$ returns a zero-length string if length is zero, or if start is
either zero or greater than the length of the string.

1f start + length is greater than the length of the original string,
then MID$ returns a string which only includes characters from
start to the end of wholeString#¥.

found =
1 =
WHILE 1 LEN(inputstringX#$)

i =1+ 1

IF MID#(inputstringX$, i, 1) = "2"

found = found + 1|

ENDIF
WEND
PRINT "1 found " + STR$¢(found) + " question marks!"

~ o O

This example counts the number of question marks in a string
(inputstringX$). It prints a message indicating how many were
found.

4-73

MSESGHEIGHT

NOTES

EXAMP

rev.

LE

10/86

height = MSGHEIGHT

MSGHEIGHT is a function which returns the height (in pixels) of
messages in the current font. The current font is the last font set
with the FONT verb.

MSGHEIGHT is the maximum of the following two values: LINEHEIGHT or
CHARHEIGHT + 2.

TASKWINDOW 0,0,-1,-1

STACKMSG "This is the last message line"

STACKMSE "This is the second message line"

STACKMSG "This is the first message line"

HeightlLeft = WINDOWHEIGHT - MSGHEIGHT # 3

FRINT "The available height of the window is "+S5TR$(HeightLeft)+"
pixels."

PAUSE ""

This example printe the available height of the Task window after
three messages are stacked. -

4-73a

PAINT

NOTES

EXAMPLE

PAINT x, y, "pathname"”

PAINT displays a canvas image in the Task window. Canvas files can
be created and modified in GRiDPaint.

The parameters indicate the name of the canvas file to be displayed
and the pixel coordinates within the Task window where the top-left
corner of the canvas image is to be placed.

Any portion of the canvas image extending beyond the edge of the
window is clipped.

It is important that the image be created and saved using BRiDPaint,
as a file with Kind “Canvas". Screenimage files do not work.

If the pathname has no Kind, then “Canvas"” is assumed. 1f no Device
or Subject is specified, then BRiDTask looks in the current Device
and Subject.

TASKWINDOW 0,0,-1,-1
PAINT 10,10, "Rencir™Canvas™"

When BRiDTask executes this, the image with Title "Renoir" and Kind
"Canvas® in the current Device and Subject is displayed on the
screen. The upper left corner of the Canvas image is placed 10
pivels from the left edge of the Task window and 10 pixels down from
the top edge of the Task window. B6RiDTask displays as auch of the
image as there is room for.

4-74

READFILES®

NOTES

EXAMPLE

contents$ = READFILE$ (pathname$)

READFILE$ is a string function which returns the contents of the
file specified by pathname$. The file specified by pathname$
remains unchanged.

Note that if you do not specify the Kind in pathname$, then the Kind
Text is assumed. If you don't specify a Device or Subject, then the
current Device and Subject of the last file accessed through
GRiDTask or the application window are assumed.

The maximum length allowed for a string variable is 64K bytes, so
that if you attempt to read a file larger than 44K bytes, a BRiDTask
error occurs.,

READFILE$ sets the ERRORCODE variable to the number of any error
that occurred. If no error occurs, then the ERRORCODE variable is
set to (0) zero.

pathname#$ = "'Floppy Disk'BaseballCards'MickeyMantle“Text™"
statistics$ = READFILE$ (pathname$)

The above example copies the contents of the file MickeyMantle into
the string variable statisticss$.

4-87

REMOVELIB

NOTES

EXAMPLE

rev.

10/86

REMOVELIB library$

REMOVELIB lets you de-install libraries of custom BRiDTask verbs
while your program is executing; this frees memory associated with
the library when you no longer need the library’'s functions. All
installed libraries are automatically removed when a BRiDTask
program exits.

Removing a library which has not been installed has no effect. See
the INSTALL verb for more information on installing libraries.

NOTE: REMOVELIB is only available under GRiDTask II.

INSTALL "Sample™Library™"”

REMOVELIE "Sample™Library™"
This example de-installs the library Sample. The custom functions

provided by the library Sample are no longer available to the
GRiDTask program.

4-87a

RETURN

RETURN

NOTES
RETURN is used within procedures. When executed, GRiDTask exits
from the procedure, and returns to the BRiDTask statement following
the procedure call.
RETURN(s) are optional. If used, there may be more than one RETURN
within a procedure, and RETURN verbs may be placed anywhere within
the procedure body. A RETURN is not needed at the physical end of a
procedure.

EXAMPLE

See the section in Chapter 4 entitled "Procedurec" for an example
using RETURN.

4-88

the Task window for ten seconds. Then it charges to the right
across the Task window.

4-91

SETFORM

NOTES

rev.

10/86

SETFORM forms

SETFORM allows you to preset the results of forms that are to be
displayed by an application in the application window. 1If a form is
preset by SETFORM, then when the application tries to display the
next form, GRiDTask intervenes and automatically causes the form to
be confirmed with the preset values. The form is not actually
displayed in the application window.

The form$ string uses two special characters:

tildes v
vertical bars |

Tildes separate the three parts of an item setting: the item
number, the choice number, and the choice text. Vertical bars
separate form items. For example, assume that the next form to be
displayed in the application window is the GRiDWrite Print Options
form; the string--

printForm$ = "1“4%all™~|{2~1 Heading™!7%4 boldface™!"

--causes the first item of the form to be set to the fourth choice
which has the text "all". The second item of the form is set to the
first choice with the text "Heading". The seventh item of the form
is set to the fourth choice with the text "boldface". The form is
automatically confirmed and is not displayed.

Always specify both the choice number and the choice text for an
item, even though this seems redundant for non-editable items.

It's important to note that SETFORM must be executed before a form
is displayed; therefore, place the SETFORM verb before the ADDKEYS
verb that causes the form to be displayed.

Sometimes, several forms follow in immediate succession. You can
preset up to five forms for later processing. To clear the queue of
SETFORM verbs waiting to be processed, use the statement SETFORM "0°

SETFORM cannot be used with File forms. See the FILEFORM verb for
more information.

TECHNICAL NOTE: In order for SETFORM to operate correctly, the
application must call the GRiD Common Code function
DataFormConfirmed. The only known GRiD applications where SETFORM
won't work are GRiDDevelop, GRiDReformat, and GRiDFile, where it
won't work with the Sort form.

4-91a

EXAMPLE

rev.

10/86

FILEFORM "*Hard disk Memcs'Sample™text™"

ADDKEYS
SETMENU
SETMENU
SETFORM
ADDKEYS

In this

9

2

"{~4~all~i2~1vHeading™i7%4~boldface™!"

ll:tl(

example, a text file is selected and confirmed in the

application window; the Print item on the Transfer menu is selected;
the Print Options item on the Print menu is selected; and then the
print options are set by the SETFORM verb. Note that the ADDKEYS
statement which sets the whole process in motion is placed after the
menus and the form are preset.

4-91b

SETMENU

NOTES

EXAMPLE

rev.

10/86

SETMENU itenm

SETMENU allows you to preset the results of menus that are to be
displayed by an application in the application window. If a menu is
preset by SETMENU, then when the application tries to display the
next menu, GRiDTask intervenes and automatically causes the menu to
be confirmed with the selected item. item is the item number that
you want to select. (Menu items are numbered from the top down,
starting at 1.) The menu is not actually displayed in the
application window.

It's important to note that SETMENU must be executed before a menu
is displayed; therefore, place the SETMENU verb before the ADDKEYS
verb that causes the menu to be displayed.

Sometimes, several menus follow in immediate succesion. You can
preset up to five menus for later processing. To clear the queue of
SETMENU verbs waiting to be processed, use the statement SETMENU 0.

Using SETMENU has several potential advantages over using ADDKEYS to
select and confirm an item in a menu. SETMENU is much faster,
easier to use, and it prevents the menu from displaying.

TECHNICAL NOTE: In order for SETMENU to operate correctly, the

application must call the GRiD Common Code function
DataMenuConfirmed. All BRiD applications currently support SETMENU.

See the example for SETFORM.

4-91c¢

SPEED

NOTES

EXAMPLE

BPEED "str*

SPEED controls how fast the keys specified by the ADDKEYS verb are
fed to the application. SPEED also controls how fast characters are
displayed by the CENTER and PRINT verbs.

The parameter string can be "Fast", “Medium" or "Slow". "Fast®
represents no delay between characters, "medium" is 0.2 seconds
delay and "slow"” is 0.5 seconds delay between characters.

The parameter string can also represent the number of milliseconds
delay between characters. To specify a 0.1 second delay between
characters you would use the following statement.

SPEED "100"

The initial setting is "Fast".

Note that some programs, such as terminal emulators connected to
hosts, may not accept keys at the fast rate.

SFEED "Fast"

FRINT "I am an Olympic typist”
SPEED "Medium"

FRINT "1 have pudgy fingers"
SFEED "Slow"

PRINT "I have boxing gloves on'

In this example, the first message is printed on the screen with no
delay between characters. The second message is printed on-screen
with a .2 second delay between characters, and the third message is
printed on-screen with one-half second delay between characters.

4-92

STOF

NOTES

EXAMPLE

rev.

10/86

STOP mode

STOP causes GRiDTask to stop running. The application window is

returned to its original size.

The other condition causing BRiDTask to stop running is when it
reaches the end of its main program file.

The optional parameter mode can be used to cause GRiDTask to reboot
your computer when the STOP statement is executed. mode can be
specified as follows:

1 Causes the system to reboot as if the power switch were turned
off and then on

2 Causes the system to warm reboot (as if CODE-CTRL-SHIFT-HYPHEN

were pressed)

These two modes of rebooting are identical under GRiD-0§; under
InteGRiD, the second method exits InteGRiD and returns to MS-DOS.

You can use this optional parameter in an unattended ERiDTask
program which downloads new versions of software and then
automatically reboots the system.

mainMenu$
meg¥

"Status ReportsiMailiExit”
"Select activity and Confirm”

nn

TASEWINDOW 0,0,-1,-1

WHILE TRUE
choice = DOMENU (msg$, mainMenus$)
IF choice =1

TASK "status"
ELSE
IF choice = 2
TASK "mail"
ELSE
IF choice = 3
STOP
ENDIF: ENDIF: ENDIF

WEND
This example represents the main body of a Task program. It

displays a menu with three items. If the third item, "Exit", is
selected, GRiDTask executes a STOP statement and stops.

4-95

STR*

NOTES

EXAMPLES

numi$ = STR$ (num)

OR

num2$ = STR$ (num,precision)

STR$ is a string function which converts a number to a string of
decimal characters.

STR$ can have one or two parameters. The first parameter is the
number to be converted. The optional second parameter indicates how
many digits after the decimal point to display. If this second
parameter is omitted, then STR$ returns a string containing the
minimum number of characters required to precisely represent the
number. See the examples.

To convert a string of‘digits to a decimal number, use the VAL
function.

STR$ (9) =3 e

STR$ (9/8) => “1:125"
STR$ (9/8,0) =) e

STR$ (9/8,2) =7 1,13
STR$ (9/8,6) => "1.125000"

The result of each STR$(..) is shown above.

4-96

Appendix A

GRiDTask Verb Summary

BENERAL PURPOSE VERBS

rev.

10/86

ADDKEYS
APPENDFILE
ASC

BREAK
BREAKONKEY
BREAKRESET
CELLS
CENTER
CHANGEKIND$
CHARHEIGHT
CHARWIDTH
CHR$
CLEARMSG
CLEARSCREEN
COMMANDL INE
COMMENT
CONCHARINS
COPYFILE
CURSOR

CURX , CURY
DATES

DELAY
DEVICES
DIRECTORYS

DO

DOFORMS$
DOMENU
ELSE

ENDIF

ENDP
ERASEBOX
ERASEFILE
ERRORCODE
ERRORSTR$
FALSE
FILEFORM
FINDTITLES$
FONT
FORMCHOICE
FORMCHOICES
FRAMEBOX
FREEFONT

ADDKEYS ‘"encodedKeyStr", mode

APPENDFILE addString$, pathname$

num = ASC (anyString$)

BREAK

BREAKONKEY key$

BREAKRESET

contents$ = CELLS

CENTER "text....."

newPathName$ = CHANGEKIND$ (pathName$, kind$)

height = CHARHEIGHT

width = CHARWIDTH

stringX$ = CHR% (num)

CLEARMSE

CLEARSCREEN

COMMANDLINE command$, secondsDelay

; Place text here

ch$ = CONCHARINS$

COPYFILE sourcePath$, destinationPath$

CURSOR x, vy

CURSOR CURX + 5, CURY - 10

today$¥ = DATES$

DELAY seconds

dev$é = DEVICES

list$ = DIRECTORY$ (mode, path#, match$,
delimiter$, sortOrder)

DO taskStatements$

form$ = DOFORM$ (msg$,form$,numlines)

choice = DOMENU (msg$, item$)

ELSE

ENDIF

ENDP

ERASEBOX topleftX, topleftY, extentX, extentY

ERASEFILE pathname$

ERRORCODE = number or number = ERRORCODE

err$ = ERRORSTR$ (errorNum)

variable = FALSE

FILEFORM "pathname”

path$ = FINDTITLE$ ("Title“Kind™")

FONT "fontPathName"

number = FORMCHOICE (form$, itemNumber)

choice$ = FORMCHODICE$ (form$, itemNumber)

FRAMEEOX topleftX, toplefty, extentX, extentY

FREEFONT "fontPathName"

rev.

10/86

GETFILES$
IF/ELSE/ENDIF
INKEY$

INPUTS

INSTALL
INSTR
INVERTBOX
INVERTLINE
ITEMCOUNT
LASTKEYS$
LASTMESSAGES$

LEN
LINEHEIGHT
LOCATE
MEMORY
MID$
MSGHEIGHT
PAINT
$§PARSEONLY
PASSKEYS
PAUSE

FLAY

FRINT
PROCEDURE
READFILE$
REMOVELIB
RETURN
SCROLL
SCROLLBOX

SETFORM
SETMENU
SPEED
STACKMSG
STACKSIZE
STOP

STR$

SUBJECTS$
SUBSTITUTES

SUBSTRINGS

TASK
TASKWINDOW
TESTKEYS
TIMES

TITLE

TRUE
UPDATESCREEN

pathName$ = GETFILE$ (msg$)
IF {exp> / stmts / ELSE / stmts / ENDIF
somekKey$ = INKEY$
value$ = INPUT$(prompt$, length, height,
initValue$)
INSTALL pathname$
location = INSTR (start, source$, find$)
INVERTBOX topleftX, topleftY, extentX, extentY
INVERTLINE X1, Y1, X2, Y2
numItems = ITEMCOUNT (list$, separaters$)
key$ = LASTKEY$ or LASTKEY$ = stringX$
LASTMESSAGE$ = message$ or
message$ = LASTMESSAGES

num = LEN (stringXs$)
height = LINEHEIGHT
LOCATE Xy ¥

space = MEMORY

portion$ = MID$ (wholeString$, start, length)

height = MSBHEIGHT

PAINT %, y, "pathname”

$PARSEONLY

PASSKEYS keysToPass$, keysToTerminate$

PAUSE keysToTerminate$

PLAY musicStr$

FRINT ‘“"text...."

PROCEDURE procedureName paraml, param2$, ...

contents$ = READFILE$ (pathname$)

REMOVELIB librarys$

RETURN

SCROLL distance, speed

SCROLLBOX topleftX, topleftyY, extentx, extenty,

"direction", distance, speed

SETFORM form$

SETMENU item

SPEED "str"

STACKMSE "messageText"”

stackSpace = STACKSIZE

STOP mode

numi$ = STR$(num) or num2$ =
STR$ (num,precision)

sub$ = SUBJECTS$

newStr$ = SUBSTITUTES (oldStr$, find$,
replaceWiths$)

sub$ = SUBSTRINGE$ (source$, delimiters,
itemNuaber)

TASK "pathname"

TASKWINDOW topleftX, topleftY, extentx, extenty

TESTKEYS “"encodedKeyStr*

clock$ = TIMES

TITLE "title text..."

variable = TRUE

UPDATESCREEN

A-2

VAL

WEND

WHILE
WINDOWHEIGHT
WINDOWMOTION
WINDOWWIDTH
WRITEFILE

MATHEMATICAL FUNCTIONS

rev.

10/86

ACOS
ATN
Cos
EXP
LOG
LOG1O
PI
RND
ROUND
SIN
S@R
TAN
TRUNC

num = VAL (stringX$)

WEND

WHILE <exp> / stmts / WEND
size = WINDOWHEIGHT
WINDOWMOTION "ON" or "OFF"
width = WINDOWWIDTH
WRITEFILE information$, pa

fArc Cosine

Arc Tangent

Cosine

Exponential

Natural Logarithm
Base 10 Logarithm
The constant Fi
Random number

Round to an integer
Sine

Square Root

Tangent

Truncate to an integer

A-3

thname$

ACOS (number)
ATN(number)
COS(angle)
EXP(exponent)
LOG(number)
LOG1O(number)
PI

RND (1)

ROUND (number)
SIN(angle)
S@R(number)
TAN(number)
TRUNC(number)

VERBS INSTALLED IN DataEntryForms LIBRARY (SEE APPENDIX 1)

DISPOSEFGRM
EDITFORMS$

FORMINIT
FORMINITFROMFILE
GETALLFIELDS#
GETCURRENTFIELD
GETFIELDVALUES$
INDEXFROMNAME
NAMEFROMINDEXS$
PARSEFORMS$
FRINTFORM

SETALLFIELDS
SETCURRENTFIELD
SETFIELDVALUE

DISFOSEFORM foramNum
key$ = EDITFORM$ (formNum, toplLeftX, topLefty,
width¥, heightY, mode)

formNum = FORMINIT (formStr$)
formNum = FORMINITFROMFILE (pathName$)
values$ = GETALLFIELDS$ (formNum, delimiter$)

currentField = BETCURRENTFIELD (formNum)
value$ = GETFIELDVALUE$ (formNum, currentField)
fieldIndex = INDEXFROMNAME (formNum, name$)
name$ = NAMEFROMINDEX# (formNum, currentField)
parsedSpec$ = PARESEFORM$ (fileSpec$)
error = PRINTFORM (formNum, printMode,
destination$,topMargin,
bottomMargin,leftMargin,
printSize, formFeed)
SETALLFIELDS tormNum, values$, delimiter$
SETCURRENTFIELD formNum, currentField
SETFIELDVALUE tormNum, fieldIndex, newValue$

A-4

Appendi x

E

Reserved Words

The names in thie list are reserved for GRiD's use.

as variable names in your GRiDTask programs.
functione and variables described in this manual, as well as names which are
reserved for future use by GRiD.
of thece names as variable names with either upper or lower-case letters, an
error may occur.

ABS

ACOS
ADDKEYS
APPENDFILE
ASC

ASIN

ATN

BREAL.
BREAKONKEY
BREAKRESET

CatlL

CDEL

CELL#
CENTER
CHANGEK IND®
CHARHEIGHT
CHARWIDTH
CHR¥

CINT
CLEARMSG
CLEARSCREEN
COMMANDLINE
CONCHARIN®
COPYFILE
Cos

CSNG

CURSOR

CURX

CURY

CvD

Cvs

DATES$
DELAY
DEVICES
DIRECTORY#
Do

DOFORM
DOFORM$
DOMENU

rev. 10/8B6

ELSE
ENDIF
ENDF

EOF

EOLN
ERASEBOX
ERASEFILE
ERRORCODE
ERRORSTK$
EXP

EXIT

FALSE
FFPATCHOFF
FFPATCHON
FILEFORM
FINDTITLES
FIRSTPAGE
FIX

FONT
FORMCHOICE
FORMCHOICES#
FRAMEBOYX
FREEFONT

GETFILES
GETPREFIX$

HEX$
HEXVAL

IF

IMP

INKEY$
INPUTS#
INSTALL
INSTR

INT
INVERTBOX
INVERTLINE
ITEMCOUNT

With few exceptions,

LASTEEYS
LASTMESSAGES
LEFTS

LEN
LINEHEIGHT
LOC

LOCATE

LOF

LOG

LOG10
LPRINT

MEMORY
MID$

MKD#

MKI$

MKS$
MSGHEIBHT

OCTs#
OCTVAL

PAGE
PAINT
$PARSEONLY
PASSKEYS
PAUSE
PEEK

PI

PLAY

POKE

POS

PRINT
PROCEDURE

READFILES
REMCVELIB
RETURN
RIGHTS$
RND

ROUND

They should not be used
Included in this list are the

if you try to use any

SCREENIMAGE
SCROLL
SCROLLBOX
SETFORM
SETMENU

S6N

SHAPE

SIN

SPACES
SPEED

SBAK

S@R
STACKMSE
STACKSIZE
STOP

STR$
STRINGS#
SUBJECT#
SUBSTITUTES
SUBSTRINGS

TAB

TAN

TASK
TASKWINDOW
TESTKEYS
TIMES
TITLE

TRUE

TRUNC

UPDATESCREEN

VAL

WEND

WHILE
WINDOWHEIGHT
WINDOWMOTION
WINDOWWIDTH
WINDOWX
WINDOWY
WRITEFILE

Worde Recerved When Using Data-Entry Formes Libraries
DISPOSEFCRN
EDITFORMS$

FORMINIT
FORMINITFROMFILE

GETALLFIELDSS
GETCURRENTFIELD
BETFIELDVALUE®
INDEXFROMNAME
NAMEFROMINDEXS$

FARSEFORMS$
FRINTFORM

SETALLFIELDS
SETCURKRENTFIELD
SETFIELDVALUE

Notes on Custom Routines
The RegisterLibraryFunctione procedure (in Sample.Fas) uses the
RegisterFunction procedure to:

1) supply the verb name to be used in GRiDTask.
2) supply the function or procedure address to 6RiDTask.

3) supply the type of function or procedure. This 1c¢ determined by
the type of value returned. Possibilities are

¥ statement - no value is passed back

¥ string - a string value is passed back

+ Integer - an integer value is passed back
¥ LongReal - a real value is passed back

¥ Boolean - a boolean value is passed back

4) supply the type and number of parameters passed from the
installed verb statement in GRiDTask to the custom routine. The
possibilities are:

Specification Parameter Type
1) none

2) "1 integer

3} "s" string

4) "r" real

Any combination of "i", "s", "r" is allowed, up to eight
maximum. Note that these parameters must match the TYPE of
parameters in the custom routine.

For convenience, the example from INSTALL is printed here.

EXAMPLE

+ This task program illustrates how to install

i the sample user-written library -

i ‘'Frograms’ Sample™Library™ - in BRiDTask.

i The new functions are: CONCAT$, FLASH, MAX, and DIV

§ S oo m e oo —o -
TASKWINDOW 0,0,-1,-1
INSTALL DEVICE$ + "Programs'Sample“Library™"

stri$ = "One and "
str2¢ = "two and ..."
PRINT CONCAT# (stri$,str2s$)

FLASH: FLASH: FLASH

FRINT "This is MAX(4,3)"
FRINT STR$ (MAX(4,3))

rev.

10/8¢6

FRINT "This is DIV (5,FI)"
FRINT STR$ (DIV (S5,FI))

STACKMSG "Press any key to exit®
FAUSE "

Using String Parameters with Installed Verbs
There are two important pointe to remember when using string
parameters with installed verbs.

First, installed verbs which have string parameters must free these
string parameters. This can be accomplished by calling the GRiD
Common Code procedure FreeString or another function or procedure
that frees the strings. GRiDTask assumes that all string parameters
passed to installed verbs are freed.

Second, any ctring which ic returned by an installed function ic

treed by GRiDTask. VYou must be careful not to reference any string
which was previously passed to GRiDTask by an installed function.

H-8

EDITFORMS

NOTES

rev.

lactkev$ = EDITFORM$ (formNum, toplLeftX, toplLefty¥, width), heighty,
mode)

EDITFORM$ displays the form identified by forsNum (from FORMINIT)
and waite for input from the user. After the user fills in the form
and presses ESC, CODE-RETURN (for confirm), or any other CODE-key
sequence, control is returned to the GRiDTask program. The string
variable lastKey$ is set to the key pressed by the user. The form
contains the latest data, regardless of the key pressed.

The font set when EDITFORM$ executes mucst be the same font set when
FORMINIT initialized the form.

The parameters for EDITFORM$ are as follows:
formNum is a number returned by FORMINIT that identifies the form.
topLeftX and topLeftY specify the pixel location of the top left

corner of the form. widthX and heightY identify the size of the
space in which the form appears.

You must reserve one line at the bottom of the screen where messages
can be displayed. The height of the line must be equal to the
height of the current font. By specifying -1 for heightVY, the forms
library will autcomatically provide the maximum height for the
display of the form and leave room for one message.

By specifying -1 for widthX, the forms library will automatically
provide the entire width of the display for the form,

mode specifiec how the form is to be displayed. The choices are as
follows:

i The form area is erased and the form is drawn normally. This
opticn is the conventional method for displaying forms.

2 The form area is not erased and only the contents of the fields
are drawn. Thic option is useful for displaying field data if
the form is already displayed on the screen. It prevents an
annoying screen refresh.

ol

The form is not displayed, but all of the field values are
recalculated. This option is useful for updating field values
in forms whose fields are linked to data in other forms. This
mode does not modify the display in any way.

1-4

4 The form area is not erased before the form is drawn. This
option can be used to display a form on top of another image,
such as a logo.

EXAMPLE

FORMINIT (READFILE$ (filename$))
EDITFORM$ {currentForm, 0, 0, -1, -1, 1)

currentForm
lastkey$

The width and height items are set so that the form extends to the
edges of the display, reserving one line at the bottom of the screen
for messages.

rev. 10/86 I-4a

Field Options and Properties Options and properties - summarized in Tatle
1-1 on the next page - determine the format, appearance, and other
characteristice of the various fields in the form. A field cption
consicste of a keyword followed by one or more parameters. A field
property consiste of a ${ield name followed by a colen and a space, a
keyword, and one or more parameters.

The following rules apply to field options and field properties:

¢ The same keywords can be used both as a field option and a field
property. A field option applies to every field definition in
the form. A field property applies only to the definition
specified by the field name. A field property overrides a
conflicting field option.

o The field options must be preceded by the text :0OPTION:

o The first field property must be preceded by the text :PROPERTY:.

o VYou can abbreviate keywords and parameters, as indicated in each
description. Feor example, you can specify either AL or ALIGN as
& keyword, and either RI or RIBHT as ite parameter. The
abbreviated keyword must contain at least the first two letters
cf the keyword.

14 a field option or property has more than one keyword, insert one

of the following between each keyword and the preceding keyword

parameter:

o One or more blank characters

c A comma

o One or more carriage-returns (press RETURN)

For example, the following three definitions for ssnum are all
valid:

ssnum: AL(RI) CO (UPPER) EX (NO)
ssnum: AL(RI), CO (UPPER), EX(NO)

ssnum: AL (RI)

CO (UPPER)
EX (NO)

I

21

Summary of Option and Property Keywords

Table 1-1 briefly describes the option and property keywords, and
their respective parameters. The sections following the table,
given in alphabetical order, give a detailed description of each of
thece items

Table 1-1. Summary of Options and Properties

Option/Property Default Function

AL (LE ' RI 1 CE) Left. Align. Places the characters in the
form field to the right or left, or
centers thenm.

CH (list) None. Choices. Specifies a choice menu for
the field with the choices specified in
list. The choice menu is displayed
above the field, and the user must
press CODE-= to move into it.

CC (UF i NO) None. Convert. Changes alphabetic characters
to uppercase when they are retrieved
from the form.

ED (YES | NO | PR) Yes. Editable. When set to PR (for
protected), the user cannot enter the
field. When set to NO, the user can
enter but cannot change data in the
field to which the keyword applies.

EQ (expression) None. Equation. Sets the value of the field
to expression, which can consist of any
of the following: strings, numbers,
field names, arithmetic operators, and
logical operators.

EX (NO | YES) Yes. Expandable. When set to Yes, the
number of characters typed in by the
user can exceed the length of the
field: otherwise, the number of
tharacters cannot be greater than the
length in the field definition.

FG (n) 2 Format. The number of digits to the
right of the decimal point to display.

rev. 10/86 1-22

rev.

10/86

HE (string)

HI (UN & OU
OIN D OND)

ME& {(mask)

PR (message)

RA (expression)
(mescage)

RE (YES | NO
i LE)

TY (5T @ NU)

{message)

None.

No.

None.

None.

None.

Nc.

String.

Help. Specifiec help text retrievable
by the user after pressing CODE-?.

Highlight. Specifies if the field 1is
to be underlined (UN), enclosed in a
box (OU for outlined), inverted (IN) or
not highlighted (NO).

Mask. Forces the user to enter
characters in a specified format.
Incorrectly entered characters cause a
message to appear.

Prompt. Causes a prompt to appear in
the message line at the bottom of the
screen.

Range. Defines a maximum and minimum
value that the user can enter in a
field. An incorrectly entered range
causes a help message to appear.

Required. When set to Yes, the user
must enter at least one character in
the field; when set to LE (for length},
the user must enter a character in
every position of the field.

When set to NU (for numeric), the user
must enter numeric characters in the
field. If you omit TY or specify ST,
the user can enter any printable ASCII
character (A-1, a-z, 0-9, and
punctuation and other special
characters)

rev.

10/86

AL -- ALIGN

Default: AL (LEFT)

The ALIGNMENT keyword has the following format:

AL (LEFT | RIBHT | CENTER)

Enter LE for left, RI for right, or CE for centered to specify data
alignment in the field as it is entered.

CH ~-- CHOICES

The CHOICES keyword has the following format:

CH (list)

CH causes a choice menu to appear above the field when the user
moves into the field. The choices are listed in list. Each choice

must be separated from the following choice by a vertical bar. For
example:

fieldName: CH (applesiorangesipearsipeaches)

This specifies that "fieldName” has four allowable choices.

The choice menu is hidden from the user until the user moves into —
the field; then, the choice menu automatically appears above the

tield. The user must press CODE-= to move the cursor up into the

choice menu. The arrow keys are used to move the cursor once it's

inside the choice menu. The user must confirm to make a selection.

All other field properties are still in effect when you use choice

menus. If you want to have a choice only field, you must specify

that the field is non-editable. For example:

Sex: ED (no) RE (yes) CH (male!female)

CO -- CONVERT

Default: CO (NONE)

The CONVERT keyword has the following format:

CO (UPPER | NONE)

When you specify UPPER, all lower-case alphabetic characters are

changed to uppercase when converted to strings using GETFIELDVALUES$
and GETALLFIELDSS.

1-23a

rev.

10/86

ED -- EDITABLE

Default:s ED (YES)

The EDITAELE keyword has the following format:

ED (YES | NO | FR)

1f you specify PR (for protected), the user cannot enter the field
to which the keyword applies; the cursor will skip over the field.
Note that you can allow a protected field to be edited by using the
SETCURRENTFIELD verb to specifically position the cursor there. 14
you specify NO, the user can enter but cannot change data in the
field to which the keyword applies. Specify PR or NO if you want to
dicplay only data that should not be modified.

Note that the user cannot modify the data in fields for which you
specify an equation (described in the next section).

E@ ~-- EQUATION

The EGUATION keyword has the following format:

EG@ f(expression)

EQ causes the field to be assigned the value of the expression.
expression can consist of the following:

o Any numeric or string value

o Any fieldname or formula that produces a numeric value
c Arithmetic and logical operators

o IF/THEN/ELSE conditional expressions

o Built-in functions

All of the following are valid numeric expressions:

25.27

10 + 15.2

totalfld + taxfld

ABS (totalfld + taxfld)

A4 field name can be used in a conditional expression. For example,
the following expression is valid:

IF fieldA > 4 THEN 0 ELSE fieldB

Note that the user cannot modify the data in a field for which you
specify an equation.

I-24

performs the same function in a single-line
field, and in multi-line fields when the
cursor is on the top line.

SHIFT-DownArrow Moves the cursor to the field below the
current field. Pressing the DownArrow key
alone performs the same function in a
single-line field, and in multi-line fields
when the cursor is on the last line.

RETURN In a multi-line field, moves the cursor to the
next line. If the cursor is in the last line
of a field, moves the cursor to the next
field.

CODE-SHIFT-UpArrow Moves the cursor to the first field in the
form.

CODE-SHIFT-DownArrow Moves the cursor toc the last field in the
form.

CODE-DownArrow In a multi-page ferm, moves the curser to the
first field on the next page.

CODE-UpArrowm In a multi-page form, moves the cursor to the
first field in the previous page.

CCGDE-= In a field with a choice menu, moves the
cursor up into the choice menu, allowing the
user to select and confirm one of the listed
choices.

rev. 10/86 1-31

